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ON THE STABILITY OF EQUILIBRIUM POSITIONS 

IN NON-STATIONARY FORCE FIELDS* 

V.V. KOZLOV 

The stability of equilibrium positions is investigated for mechanical 
systems in force fields with potentials of the form p(f) V, where V is 
a function of the generalized coordinates. Systems of this form are 
frequently encountered in applications. It is shown that if the factor 
P w increases monotonically to -tm as t-+CW, then stability con- 
ditions for equilibria can be formulated in the form of extremal 
properties of the function Cr. The general results are applied to the 
problem of the motion of a rigid body in an infinite volume of an ideal 
fluid. 

1. Introduction. Suppose that x1, . . . . x, are generalized coordinates for a mechanical 
system with n degrees of freedom, T is the kinetic energy and -p(t)V(x) is the force func- 
tion. The motion is described by Lagrange's equations 

@T/&z') - 8Tldx = --pN/dx (1.1) 

We will always assume that p(l)> 0 for all values of t. 
Equations of the form il.11 are often encountered in applications. We shall give an 

example of intrinsic interest. Consider the problem of the motion of a heavy rigid body in a 
perfect fluid atrestat infinity and in irrotational motion /l/. We assume for simplicity 
that the rigid body has three mutually orthogonal planes of symmetry. In this case the kinetic 
energy of the "body plus fluid" system has the form 

T = (Ao, 0)/2 + f&J, u)/Z 

where o is the angular velocity of the rigid body, Y the velocity of the paint of inter- 
section 0 of the planes of symmetry, and A and C are symmetric positive definite matrices. 
Because of the assumed symmetry of the body, the resultant of the force of gravity and the 
buoyancy force acts on the point 0. Let P be the magnitude of the sum of these forces. 

The motion of the rigid body can be represented in the form of a system of Kirchhoff 
equations 111 

(H'/I%)' + w x (dT/du) = -Py, @T/f%J$ -I- 0 x (dT/&o) + u x (1.2) 
(BT/&) = 0 

{where y is the vertical unit vector). Eq.cl.2) needs to be supplemented with the geo- 
metrical Poisson's equations 

a' + 0 X a -= p' + 0 x fi =m y' -t_ w x y = 0 (1.3) 

where a and p are fixed unit vectors orthogonal to the vector Y. 
The equations of motion have three integral constants of the motion: 

@T/au, a) = cl (aTl&, @) = cp (aTi&, y) = c3 - Pt (1.4) 

From (1.4) we obtain the equality CV = C,a + C& + (CQ- Pt)Y. 

Using this relation, the second equation of (I.21 can be put in the form of Euler's 
equation 

(1.5) 

Eqs.cl.3) and (1.5) describe the rotation of a rigid body about a fixed point in a non- 
stationary force field with force function -W. These equations are particularly simple for 
c1 = e, = e3 = 0: 

AC.,)- f o x Ao = Pat2 (y X aviay), Y.-F- 0 X Y = 0 

v = (c-‘y, y)iZ 

(1.6) 
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They are identical with the rotation equations for a rigid body in an axisynmetric force 
field with potential energy PYV. In the general case W =P2taV + tWx + W,, where W, and 
W, depend only on the position of the body. 

The equilibrium positions of system 11.1) coincide with the critical points of the func- 
tion V. It turns out that for a certain class of functions p the stability of the equilibria 
is determined exclusively by the extremal properties of the function V. 

Suppose dV(0) = 0 and V (0) = 0. 

2. Sti7biZity conditions. Theorem 1. Suppose .Z=o is a local maximum of a smooth 
function V. Then the equilibrium x = 0 is unstable. 

Theorem 1 generalizes the classical Lyapunov result fox unstable equilibrium in a station- 
ary field (p = const), when v=v,+... and the homogeneous form Vm reaches a strict 
maximum at the point x=0. The proof is based on applying the results of /2/. 

When the function V is a homogeneous form of degree m 22, Theorem 1 can be proved by 
Lyapunov-Chetayev methods. 

As an illustration we consider the case of a constant matrix 
/I aaT/i3xt’dx’j 1 = R gij 1 = G 

For the moment of inertia I= (&,I) we have the virial identity 

I" =4T - 2pmV 

Because V(z)<0 by assumption, I'*> 0. If I’ = 2 (C+,r')> 0 at the initial instant, 
then 1(t)-m as t++~. Hence the 1=0 equilibrium is unstable. 

We make the change of variable 
r = g (t), g' = $1. 

in Eqs.(l.l). It is clear that g is a monotonic function of t. Denoting differentiation with 
respect to 7 by a prime, we obtain 

(aT*/ady - aT*iax = -aviax - cwk (2) 

T’ = 3 gij (x) xi'xj'12, k = p’l(Zp’l*) 

(2.1) 

Applying the change of energy theorem to Eqs.(Z.l), we obtain the equality 

(Z'* + V)' = -k (Gz’, x’) = -2kT* 

From (2.2) we immediately obtain the following proposition. 

(2.2) 

Proposition 1. Suppose p’ > 0 and the function V has a strict local minimum at the 
point Z = 0. Then the z = 0 equilibrium is stable relative to the coordinates x1, . . . . z,. 

As will be shown below, there may be no stability relative to the velocities 2‘. 

Theorem 2. Suppose the following conditions are satisfied: 

1) p' > 0, 2) jlwp (t) = +m, 3) p”p < 3/,p’p (2.3) 

and the function V is analytic in xr,...,~, in an neighbourhood of the point x = 0. Then if 
V has a strict local minimum at the point s=o, the s=O equilibrium is asymptotically 
stable relative to the coordinates ~1, . . . . x,, (q-t0 as t-t +a). If, however, the function 
V does not have a local minimum at the point x = 0, then the z = 0 equilibrium is unstable 
relative to the coordinates x1,..., x,,. 

Condition 3 is equivalent to assuming that the function k(z) diminishes monotonically 
as z-+m. It is obviously satisfied by functions p(t) of the form ~10, cexp(at) and 
cln (at) (with c, 01 > 0). 

We remark that Theorem 2 does not hold in the case when the function V is infinitely dif- 
ferentiable, but not analytic. liere is a simple example: V(O)=O, V(Z)=~X~(--~-~)COSZ-~ when 
Z # 0. The equilibrium position Z= 0 is not a local minims of the function V. However, 
if conditions (2.31 are satisfied, this is a stable equilibrium with respect to the x coordi- 
nate. 

To prove Theorem 2 we introduce the function H(z', x)= T* + V. 
assumption, 

Because p-20 by 
then in view of the identity (2.2) the function H decreases monotonically. Con- 

sequently, as ?+ 00, either H(t)+ -CQ or H (z) -+ c. 

Theorem 3. Suppose conditions (2.3) are satisfied and the trajectory of motion 
bounded. Then c is a critical value of the function H. 

5 (t) is 

Theorem 2 follows from Theorem 3 and the isolation properties of critical values of the 
analytic function V/31. 
I' = 0) 

We note that the critical points of the function H are pairs (5 2: z,,, 
where x0 is a critical point of the function V. Thus c = V(50). 

We assume that H(r)+c when z--f +m. From (2.2) 
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jk(T)T*(T)dT<CG (2.4) 

We shall show that c<sup V. Indeed, suppose c>sup V. Because T* + Y>c, we have 
P>c- V >Cl > 0. But then 

m 

s 
.+$dt= -+pj;=oa 

%* 'i* t. 

since p (t)+ -l-cc as t-+$-m (condition 2). This is a contradiction. We emphasise that 
here we have not used condition 3 on the monotonicity of the function k(z). 

In the general case, the same idea is used in the proof of Theorem 3. However, if c< 
sup v, the function T* (z) can have positive values as small as desired and even vanish. 
We aSsume that c is not a critical value of the function H, and hence of the function V. 
If for sufficiently large values of 'G the changed kinetic energy T*(T) is small, then the 
value of V(I (T)) is very little different from C. However, near the hypersurface {V(x) = c) 
there is no equilibrium position, and hence over the time AT <<E the kinetic energy !I"* >x> 
0. (A rigorous proof is performed using the method described in /4/j. Because Theorem 3 
assumes that the trajectory of motion x(z) is bounded, E and x are positive constants 
that are fixed for a given trajectory. Furthermore, the energy T* (z) > x over the time 
interval AZ> 6 = const> 0. 

One thus finds a sequence of new instants of time TO, TI, TV,.... such that T* (.c) <x 
for r E IT?,, tenit (n = 0, 1, 2, . . .) and T*(t) >;-x for z E Ix,,_~, %,,I (n = 1, 2, . . .). 

As has already been noted, ~~~~~ -'&<e and rSn --T~,_z >- 6 for all values of n. If the 
sequence T, is bounded, then T* (‘r).>‘x for all z 2 ma4<, and hence inteqral (2.4) diverges. 

The most interesting case is that of an infinite sequence Tn. 

Lemma. We assume that the positive function !(T) decreases monotonically and that 

Then for every monotonic sequence 't, such that -&,+r - Q,,<? and %I - T%,,_, > 6, we 
have the equality 

(where summation runs over n from 1 to w). 

Proof. Inserting, if necessary, new intervals of zero length into the sequence of 
intervals Iz,, xlncll, one can arrange that q<.+f~. for some positive u and G. In view 
of the monotonicity of the function f we have the inequality 

Consequently, the sum (2.5) is not less than 6x;f(~&. Because 7 2n < 2117~ _t CJ and f de- 

creases monotonically, the sum series (2.5) is not less than Sxlf(2gn-t0). However, this 
series diverges to +ca by the Cauchy-Maclaurln integral test. 

In the intervals [~,+r, zz,) we have the inequality T*>x. Consequently, 

However, in view of the lemma the latter sum is equal to oz. This contradicts the 
assumption of the convergence of integral (2.4). Theorem 3 (together with Theorem 2) is 
proved. 

3. AppZicaticm to the probtem of the motion of a ri&d body in an idea% fluid. Eqs.tl.61 
have an area integral (Ao.11) = c. By fixing the value of c one can reduce the number of 
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degrees of freedom from three to two. If c=o, then the reduced system is natural. The 

configuration space is the Poisson sphere Sz = {(y,y) = I}, and the potential energy is 
identical with the restriction of the function Pzt2(Ce1y, y)/2 to the sphere 9. This function 
has six critical points - the equilibrium positions of the reduced system. They correspond 
to the unit eigenvectors of the symmetric operator C. We denote them by te,, +ea, lea. 
Suppose (C-Q,, e,) > (C-Q,, e,) 2 (C-Q,, 4, so that the function V has its minimum values at the 
points Y = 93. If this is a strict minimum, then the equilibrium positions are asymptoti- 
cally stable with respect to the coordinates onS2, while the remaining four equilibria are 
unstable. One can prove that for almost all motions y (t)+fe, for t+oo. 

In order to give a mechanical interpretation of this result, we consider the translational 
motion of a rigid body with unit velocity 2). The kinetic energy of the motion is (CV, v)/2 
and is a maximum if v = +t?e,. Hence, if the body moves in the direction of the vector 
then its virtual mass hasits maximum value. 

le.% 
In particular, if the rigid body has the form 

of a lamina, then the vector +e, is orthogonal to its plane. Thus under the given assump- 
tions a freely falling heavy rigid body in a perfect fluid asymptotically tends to a position 
in which the axis with the greatest virtual mass is vertical. If the rigid body is plane, 
then this plane tends towards a horizontal position. 

In the general case, when the integral constants of the motion c1 and c2 are non-zero, 
the motion is described by Eqs.cl.3) and (1.5). In local coordinates on the SO (3) group 
they can be put in the form of Eqs.ta.1): 

(aT*iad)' - aT*iax = -aw*iax - ~~'/(24 
(r = tv2, w* = PZV + WJ(2Z)'l~ + WJ(2z)) 

We introduce the function H = T* + W* and study its behaviour as z+uJ. 
Because H’ = -aHI& - T*h, 

H’ = W,/(Z+ + W,l(2+) - T*/z (3.1) 

We assume that the motion trajectory 5 (t) is bounded. This condition is certainly 
satisfied in the motion of the rigid body because of the compactness of the SO (3) group. 
Hence the functions W,(Z(T)) and W,(x(.t)) are bounded. Hence the improper integrals 

converge. Using 
of the integral 

J$+%&+ 
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the boundedness of the function H(T) from (3.1), we obtain the convergence 

But then from (3.1) we find that 

exists. 
Applying the discussion from Sect.2 and using the result for the convergence of integral 

(3.21, one can show that the constant c is identical with the critical value of the function 
V. In particular, if the point I = 0 is a strict local minimum of an analytic function V, 
the motion 5 (t) with small initial data x (0) and 2' (0) tends to the point x = 0 as 
t+ M. 

(3.2) 

lim H (T) = c 
z-m 

In the problem under consideration the function V has no isolated minima: it takes minimum 
values at two circles given by the equations y =&e,. Hence as t+ m a falling body tends 
in general to a position such that the axis with the largest virtual mass is vertical. If c1 
and c2 are non-zero, the body can rotate about this axis. 

We again return to the general problem of the motion of a mechanical systemwith potential 
energy W = t2V + tW, + W,. 
coincide, 

If the critical points of the functions V, WI 
then the equations of motion have no positions of equilibrium. 

and W, do not 

certain general assumptions, 
However, given 

equations of motion. 
there are instead some remarkable special solutions to the 

Proposition 2. If x=0 is a non-degenerate critical point of the function v, the 
equations of motion have a solution x (0 
expansion 

that can be asymptotically represented by the 
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This means that as t-+-l, 

(3.3) 

In particular, s(t)+0 as t-too. 

Proof. The equations of motion have a unique formal solution in the form of the power 
series (3.3). The coefficient of #, is given by the equation 

cs(*) -+- 4 = 0, c = aaF/a,* to), a = awl/ax (0) 

and the remaining coefficients are found by induction. The radius of convergence of series 
(3.3) is, as a rule, equal to zero. However, according to /5/, the equations of motion must 
have a solution for which the series (3.3) is the asymptotic expansion as f--rm. 

In the general problem of a falling rigid body all the critical points of the function V 
are degenerate. However, Proposition 2 can be applied to the special case of the motion of 
a rigid body when a plane of symmetry is in the vertical position. 

4. Asylnptotic forms of smd?. oscittations. Consider the problem of the motion of system 
(1.1) in the neighbourhood of a stable equilibrium position x = 0. We shall suppose that the 
conditions of Proposition 1 are satisfied. The linearized equations of motion take the form 

With a linear transformation of the coordinates x the matrix A can be reduced to unity 
and C diagonalised: diag ka, . . ., u,~]. 

We shall consider a typical case, when all the % > 0. In the new coordinates zl, ..,, 
x, Eq.(3.1) separates: 

5b" + pwr%cb 3 0, Fc = 1, . . ., n (4.2) 

We shall study the behaviour of solutions of this linear equation as t-t m (dropping 
the index k). 

Replacing the time coordinate l+z using the formula t' = p’l* and making the sub- 
stitution r = Z&9/', we reduce Eq.14.2) to the form 

sb + 4 (z) z z= 0, 4 = 02 - ii':2 - k?G (4.3) 

If the conditions 

are satisfied, then the solution of (4.3) can be represented in the form 

z = qsin s (q(~)~'l~~ + c,cos s (~(~))~l~~ + S(r) 
r. z. 

where c, and cp are arbitrary constants, and 5 and g'+O as ?c+,rn (/6, Chapter V/). 
For example, for p = a2t2Y (a, p = const), the value of 4 (7) is 09 + cita (c = const) and so 
all the conditions of (4.41 are clearly satisfied. 

Since z __ sp-'jr, the x coordinate performs oscillations whose amplitude decreases as 
(P (#“'S. while the frequency increases with tine. For example, for a power-law time depen- 
dence of p the frequency can be represented in the iorn of the sum 

where the function n(t) is bounded. 
The coordinates .x1, . . ..z. can be called normal, and 

Eqs.i4.2) can be called normal oscillations. The general 
the motions described by the linear 
solution of system (4.1) is the sum 
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of normal oscillations whose amplitude decreases without limit in time. For example, in the 
problem of a falling rigid body in a fluid the amplitude decreases as t-'/t, while the fre- 
quency increases as t. 

5. The inf ‘laence of gyroscopic forces. We add the term l?x' to the right-hand side of 
Eq.(l.l), where I' is a skew-symmetric matrix. The presence of gyroscopic forces does not, 
of course, change the equilibrium positions and the identity (2.2) remains valid. Hence 
Proposition 1 is still true in the more-general case. However, the asymptotic forms of small 
oscillations will be very different. 

We will consider as an example the linear system of equations 

2" -- wy' = --p (t) z, y" - wz' = --p (t) y, 0 = const (5.1) 

These equations admit an integral x'y - xy' + o (5' f y2)/2 = c which takes the form r2q' = 
--or=/2 j c in polar coordinates r,cp. 

We will investigate a particular solution corresponding to the case c = 0. Because 
VP' = --o/2 = const. the point moves along a line rotating with constant angular velocity around 
the origin of coordinates. From the change of kinetic energy theorem we obtain the equality 

(r.O -I- r*i")' + p (rZ.2)' = 0 (5.2) 

Using the relation 'p' zzz --o/2, we obtain from (5.2) the equation 

r" + (p + w2/4) r = 0 

If p increases monotonically to infinity, then, according to Sect.4, the variable r 
performs oscillations whose amplitude decreases without limit as (p(t)+ 0”/4)-‘I+. In particular, 
.zzzZ;ya-+O as t+co* 

This last property is not accidental. It turns out that if the conditions (2.3) are 
satisfied and the point s = 0 is a strict local minimum of an analytic function V, then in 
presence of gyroscopic forces the x = 0 equilibrium is asymptotically stable with respect to 
the coordinates x1,. ..,x,. 

Gyroscopic forces are known to appear when the order of the system is reduced by a sym- 
metry group. As an example, we again turn to Eqs.{1.6), which have a Noether integral 
y) = e. 

(Ao, 
For a fixed value of C, the rotation of the rigid body is described by a dynamical 

system with two degrees of freedom, under the influence of gyroscopic forces and additional 
potential forces with potential c2/[2 (_~T,Y)]. The presence of the additional potential does 
not change the equilibrium positions of the reduced system in this case. These particular 
motionscan be treated as relative equilibria: one of the eigendirections of the operator C 
(determined by vectors e,,e,,e, in Sect.3) is vertical and the body rotates about this axis 
with constant velocity. There are six of them in all, so in the general case (when the eigen- 
values of the operator C are different), two of them are asymptotically stable with respect 
to the y coordinate, while four of them are unstable. 

In the general case, 
trV (5) + w (5) 

after the order has been reduced the reduced potential of the form 
may not have critical points that are relative equilibria, However, in this 

case one can establish the existence of particular solutions of the form (3.3) to replace 
them, given the condition that'the critical points of the function V are non-degenerate. 
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